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ABSTRACT 

We report the design, fabrication, and experimental 
characterization of externally-fed, batch-microfabricated 
electrospray emitter arrays with integrated extractor grid 
and carbon nanotube flow control structures for low-
voltage and high-throughput electrospray of the ionic 
liquid EMI-BF4 in vacuum.  The conformal carbon 
nanotube forest on the emitters provides a highly effective 
wicking structure to transport liquid up the emitter surface 
to the emission site at the tips.  Arrays containing as many 
as 81 emitters in 1 cm2 were tested and emission currents 
as high as 5 μA per emitter in both polarities were 
measured, with a start-up bias voltage as low as 520 V.  
Imprints formed on the collector electrode and per-emitter 
IV characteristics showed excellent emission uniformity. 
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INTRODUCTION 

Efficient high-throughput generation of ions using 
electrospray ionization is of great interest for a number of 
emerging technological applications including mass-
efficient nanosatellite electric propulsion, multiplexed 
focused ion beam imaging, and high-throughput 
nanomanufacturing.  The current and mass flow rate 
produced by a single electrospray emitter are relatively 
small; therefore,  arrays of emitters that operate in parallel 
have been proposed and demonstrated to greatly increase 
the throughput of the electrospray source [1-3].  In 
addition to multiplexing, electrospray emitter scaling-
down provides several advantages, including (i) sharper 
emitter tips that operate at lower bias voltages, (ii) 
miniaturized emitters that can be densely packed into 
arrays to obtain a large numbers of emission sites per unit 
area, and (iii) small-scale emitter arrays that can be batch-
fabricated at low cost using microfabrication processes. 

The current design builds upon previous work on 
microfabricated electrospray emitter arrays for ionic 
liquids done by our group [3, 4] by implementing a batch-
microfabricated MEMS multiplexed externally-fed 
electrospray array with integrated extractor grid and 
carbon nanotube (CNT) flow control structures for high-
throughput generation of ions from ionic liquids in 
vacuum.  The design features a hierarchical structure that 
brings together optimized structures with associated 
characteristic lengths that span five orders of magnitude: 
mesoscale deflection springs for precision assembly of an 
extractor electrode die to an emitter array die to attain low 
beam interception, micro-sharp emitter tips for low-
voltage electrospray emission, and a nanostructured 
conformal CNT wicking structure that controls the flow 

rate fed to each emitter to attain high emitter current while 
maintaining good array emission uniformity. 

The emitter die and extractor die are fabricated 
separately, and are assembled together using deflection 
springs [5, 6] that clamp onto dowel pins and provide 
precise alignment of the two components.  The electrode 
separation distance is tuned using insulating spacers.  In 
general, this distance should be small for a low start-up 
voltage, which is given by [7] 

 ௦ܸ௧௧ ൌ ටఊ·ோఌ ݈݊ ቂଶோீ ቃ  (1) 

where γ is the surface tension, R is the emitter tip radius, 
εo is the permittivity of free space, and G is the distance 
from the emitter tip to the edge of the extractor aperture. 
After operation, the two electrodes are easily 
disassembled, cleaned and replenished with liquid. 

Internally-fed emitters supply liquid to the emission 
site through a capillary channel; this implementation is 
not ideal for ion emission because capillary channels 
typically provide low hydraulic impedance and internally-
fed emitters can be prone to clogging, which causes 
device failure.  The implemented electrospray emitters are 
instead externally-fed, with a dense plasma-enhanced 
chemical vapor deposited (PECVD) CNT forest 
conformally grown on the surface of the emitters.  The 
CNT forest acts as a wicking material to transport the 
ionic liquid from the base of the emitters to the emitter 
tips where it is ionized due to the strong electric fields 
present there.  The ionic liquid tested in this work, i.e., 
EMI-BF4, does not spread on the surface of an uncoated 
silicon emitter array (the contact angle of EMI-BF4 on 
silicon is 38o).  However, EMI-BF4 is found to be highly 
wetting on a CNT-coated silicon emitter surface, and a 
drop of EMI-BF4 spontaneously spreads across the emitter 
array, impregnating the surface and coating the emitter 
tips. 

In addition to its useful wetting properties, a CNT 
forest provides hydraulic impedance to the ionic liquid as 
it flows up the surface of the emitters.  Electrospray 
emission can occur in the ionic regime rather than a 
mixed ionic/droplet regime if the flow rate to the emission 
site is sufficiently low [8].  A porous medium can limit 
the flow across the emitter surface in order to match the 
low flow rate for ionic emission.  CNT films are 
particularly useful because their porosity, determined by 
CNT diameter and packing density, is highly tunable by 
changing the growth parameters. The flow rate in the 
ionic regime is related to the measured current I by 

 ܳ ൌ ூۃெۄே  ఘ  (2) 

where ۄܯۃ is the average molar mass of the emitted 
particles, N is Avogadro’s number, e is the elementary 
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charge and ρ is the density of the liqu
 5~ ,(kg/mol,  ρ=1300 kg/m3 0.2∽ ۄܯۃ)
emitter corresponds to Q=8×10-15 m3/s.
porous medium is governed by Darcy’s l

௦ሬሬሬԦݍ  ൌ െ ೞఓ   ܲ
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surrounding silicon, thereby avoiding a potential electrical 
short due to liquid bridges forming between the electrodes 
at the dowel pins.  The emitter and extractor dies are 
assembled together by clamping the deflection springs 
onto four acetal dowel pins, with polyimide spacers 
separating the two electrodes.  We used a triode 
configuration to characterize the performance of the 
electrospray sources, where a silicon collector electrode, 
placed 3.5 mm from the emitter die, is used to measure 
the emission current and also to collect imprints of the 
emission.  The circuit used to test the devices is shown in 
Fig. 5.  A Bertan 225-10R source-measure unit (SMU) 
was used to bias the emitter electrode up to ±2000 V, 
alternating the polarity to avoid a build-up of ions of 
either polarity [10].  A Keithley 6485 picoammeter 
measures the current intercepted by the extractor grid, and 
a Keithley 237 SMU was used to measure the collector 
current.  A pair of diodes and a fuse protect the 
picoammeter from current surges.  The extractor electrode 
was held at 0 V and the collector electrode was biased up 
to 1000 V with opposite polarity to the polarity of the 
emitted beam (e.g., a positively biased emitter die would 
face a negatively biased collector).  Data were collected 
using a PC and a LabView script. 

 
Figure 5:  Schematic of the electrospray testing circuit. 

 
RESULTS AND DISCUSSION 

The performance of the electrospray sources with 
different array sizes has been characterized.  Across all 
devices, three different phases of emission are observed: 
an initial overwet phase, a steady phase, and a depletion 
phase.  Similar behavior was exhibited by our previous 
generation of surface-fed emitters that use black silicon as 
wicking material [4].  With fresh liquid applied to the 
emitter surface, emission is initially noisy and unstable, 
punctuated by current surges that are thought to be due to 
droplet emission.  Subsequently, emission steadies and is 
marked by output current as high as 5 μA per emitter. 
After more than five minutes of operation, the liquid on 
the surface of the emitters begins to deplete, and beyond a 
certain bias voltage the current stops increasing.  Once the 
liquid is replenished, the devices can be reused. 

The current-voltage characteristics of a 7 by 7 emitter 
array during the steady emission phase are shown in Fig. 
6, with 600 μm (G=320 μm) and 360 μm (G=250 μm) 
separation between the emitter and extractor electrodes. 
Thinner spacers 240 μm thick were also tested but these 
led to liquid shorts forming between the emitter and 
extractor electrodes shortly after emission began.  The 
curves show a strong non-linear dependence between the 

current and the bias voltage.  The emission current 
increases exponentially for current below 0.5 μA, and 
then increases more or less linearly with a slope of 90 
nA/V.  Considering as start-up voltage the voltage at 
which the collector current per emitter reaches 5×10-6 μA, 
the start-up voltage is 520 V for the 360 μm spacers and 
1200 V for 600 μm spacers.  It is clear that reducing the 
gap between electrodes reduces the operating voltage.   

For currents above 50 nA per emitter, the devices 
typically have ~80% transmission in both polarities.  The 
extractor and emitter current for a 9 by 9 emitter array are 
plotted in Fig. 7, showing an intercepted current on the 
extractor electrode consistently lower than 20%.  This 
interception current is higher than values previously 
reported [4], and could be reduced by increasing the 
aperture diameter though at the cost of having to increase 
the bias voltage, or by applying a larger bias voltage to 
the collector electrode. 

 
Figure 6:  Per-emitter collector current vs. emitter-to-
extractor bias voltage for a 7 by 7 emitter array, with   
360 μm and 600 μm electrode spacing.  
  

 
Figure 7:  Extractor and collector current vs. emitter-to-
extractor bias voltage for a 9 by 9 emitter array.  

 
Current-voltage characteristics in the steady phase for 

all five emitter array sizes are shown in Fig. 8, using 360 
μm thick spacers between the emitter and extractor 
electrodes in all cases.  We obtained symmetric emission 
in both polarities with as much as 5 μA per emitter tip, 
five times higher than the best values previously reported 
in the literature [2].  Similar curve shapes and slopes 
indicate that the emitters operate uniformly in each of the 
different sized arrays.  Lower start-up voltage was 
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observed for the 9 by 9 emitter array because the etched 
emitters were about 50 μm taller than in the other arrays. 

Imprints (Fig. 9) on the collector electrode confirm 
that the emitters turn on uniformly across the arrays, with 
patterns on the collector plates that match the emitter 
array layouts.  To calculate the beam divergence angle, 
the imprints from the 2 by 2 emitter array are used for 
reference.  The imprint from a single emitter has a 
diameter of about 5.8 mm, and the collector is spaced 3.7 
mm from the emitter tips, corresponding to a beam 
divergence semi-angle of 38o. 
  

 
Figure 8:  Per-emitter collector current vs. emitter-to-
extractor bias voltage for five different emitter arrays. 
 

 
Figure 9: Electrospray imprints on the silicon collector 
electrode for (a) a 2 by 2 emitter array, (b) a 7 by 7 
emitter array.  Each silicon plate is 2 cm by 2 cm. 
 
CONCLUSION 

The first demonstration of a MEMS multiplexed 
electrospray source with integrated extractor grid and 
carbon nanotube (CNT) flow control structures for low-
voltage high-throughput electrospray emission from ionic 
liquids in vacuum has been reported.  The conformal 
carbon nanotube film grown on the surface of the emitters 
is a highly wetting coating that effectively transports the 
liquid to the emission sites at the emitter tips.  Using 
devices containing 4, 9, 25, 49 and 81 emitters in 1 cm2, 
symmetric emission in both polarities with as much as 5 
μA per emitter tip was obtained – a factor of five higher 
than the best per-emitter values reported in the literature.  
Imprints on the collector electrode demonstrate uniform 
operation of the emitter arrays.  Future work will include 
time-of-flight measurements to identify the distribution of 
ions and droplets in the spray generated by the 

electrospray source. 
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